
VACUUM Strategy:
Autovacuum, FSM, 

Visibility Map 
Selena Deckelmann

End Point Corporation
@selenamarie



PgCon 2009

Hi!

• Postgres consultant for End Point

• User Group Liaison for postgresql.org

• Conference Organizer





PgCon 2009

What we’ll cover

• VACUUM basics: MVCC, FULL

• The old Free Space Map (8.0->8.3)

• The new Free Space Map (8.4-> the 
FUTURE)

• B.A.: Before Autovacuum

• A.A.: After Autovacuum

• Autovacuum best practices



PgCon 2009

Why VACUUM sucks

• Lots of I/O

• Long running VACUUM queries that annoy 
sysadmins, clients, DBAs

• Different than other databases (manual)



PgCon 2009

Why do we have 
VACUUM anyway?

• Normal maintenance for dead rows

• Extreme maintenance for table bloat

• Preventing transaction wrap-around



PgCon 2009

VACUUMing for 
normal maintenance

Let’s start with: MVCC

Multi Version Concurrency Control



PgCon 2009

VACUUMing for 
normal maintenance

MVCC - Pessimistic rollback behavior

Old versions of rows stored in the same 
relation space



PgCon 2009

A very simple example

• SIMPLE. ABSTRACTED.

• I am not explaining HOT today.

• See Pavan’s presentation from PgCon 2008: 
http://www.pgcon.org/2008/schedule/
events/105.en.html

http://www.pgcon.org/2008/schedule/events/105.en.html
http://www.pgcon.org/2008/schedule/events/105.en.html
http://www.pgcon.org/2008/schedule/events/105.en.html
http://www.pgcon.org/2008/schedule/events/105.en.html


PgCon 2009

How MVCC works
“Cats are not very cute.”

Table



PgCon 2009

Example 1
“Cats are not very cute.”ID #2 - SELECT

Table



PgCon 2009

How MVCC works
“Cats are not very cute.”ID #2 - SELECT

“Cats are adorable.” ID #3 - UPDATE

Table

There’s a 
new row 
version!



PgCon 2009

How MVCC works
“Cats are not very cute.”ID #2 - SELECT

“Cats are adorable.”

Once Transaction ID #3 is committed, the original row is 
no longer visible to future transactions, but still exists 
and is visible to ID #2.

Table



PgCon 2009

How MVCC works
“Cats are not very cute.”ID #2 - SELECT

“Cats are adorable.”ID #4 - SELECT

Table



PgCon 2009

How MVCC works
“Cats are not very cute.”ID #2 - SELECT

“Cats are adorable.”ID #4 - SELECT

Once Transaction ID #2 ends, then the row associated 
with ID #1 is no longer visible to any future transactions.

Table



PgCon 2009

Example 2
“Cats are not very cute.”

“Cats are adorable.”

“Cats should rule the world.” ID #6 - UPDATE

Table



PgCon 2009

Example 2
“Cats are not very cute.”

“Cats are adorable.”

“Cats should rule the world.” ID #6 - UPDATE
ID #6 - ROLLBACK

Table



PgCon 2009

Vacuum?
“Cats are not very cute.”

“Cats are adorable.”

“Cats should rule the world.”

Table



PgCon 2009

“Cats are not very cute.”

“Cats are adorable.”

“Cats should rule the world.”

VACUUM cleans up these rows

Table

Vacuum!



PgCon 2009

“Cats are adorable.”

Table



PgCon 2009

BLOAT



PgCon 2009

BLOAT

• A measure of how space “dead tuples” take 
up in tables and indexes

• Bloat slows down scans and will eventually 
cause basic table operations to be slow.



PgCon 2009

BLOAT Avoidance!

• VACUUM regularly

• Keep Free Space Map big enough (pre 8.4)

• Monitor bloat with check_postgres:
http://bucardo.org/check_postgres

check_postgres_bloat --port=5432 
--warning='100 M' --critical='200 M'

http://bucardo.org/check_postgres
http://bucardo.org/check_postgres


PgCon 2009

BLOATSELECT
  schemaname, tablename, reltuples::bigint, relpages::bigint, otta,
  ROUND(CASE WHEN otta=0 THEN 0.0 ELSE sml.relpages/otta::numeric END,1) AS tbloat,
  CASE WHEN relpages < otta THEN 0 ELSE relpages::bigint - otta END AS wastedpages,
  CASE WHEN relpages < otta THEN 0 ELSE bs*(sml.relpages-otta)::bigint END AS wastedbytes,
  CASE WHEN relpages < otta THEN '0 bytes'::text ELSE (bs*(relpages-otta))::bigint || ' bytes' END AS wastedsize,
  iname, ituples::bigint, ipages::bigint, iotta,
  ROUND(CASE WHEN iotta=0 OR ipages=0 THEN 0.0 ELSE ipages/iotta::numeric END,1) AS ibloat,
  CASE WHEN ipages < iotta THEN 0 ELSE ipages::bigint - iotta END AS wastedipages,
  CASE WHEN ipages < iotta THEN 0 ELSE bs*(ipages-iotta) END AS wastedibytes,
  CASE WHEN ipages < iotta THEN '0 bytes' ELSE (bs*(ipages-iotta))::bigint || ' bytes' END AS wastedisize
FROM (
  SELECT
    schemaname, tablename, cc.reltuples, cc.relpages, bs,
    CEIL((cc.reltuples*((datahdr+ma-
      (CASE WHEN datahdr%ma=0 THEN ma ELSE datahdr%ma END))+nullhdr2+4))/(bs-20::float)) AS otta,
    COALESCE(c2.relname,'?') AS iname, COALESCE(c2.reltuples,0) AS ituples, COALESCE(c2.relpages,0) AS ipages,
    COALESCE(CEIL((c2.reltuples*(datahdr-12))/(bs-20::float)),0) AS iotta
  FROM (
    SELECT
      ma,bs,schemaname,tablename,
      (datawidth+(hdr+ma-(case when hdr%ma=0 THEN ma ELSE hdr%ma END)))::numeric AS datahdr,
      (maxfracsum*(nullhdr+ma-(case when nullhdr%ma=0 THEN ma ELSE nullhdr%ma END))) AS nullhdr2
    FROM (
      SELECT
        schemaname, tablename, hdr, ma, bs,
        SUM((1-null_frac)*avg_width) AS datawidth,
        MAX(null_frac) AS maxfracsum,
        hdr+(
          SELECT 1+count(*)/8
          FROM pg_stats s2
          WHERE null_frac<>0 AND s2.schemaname = s.schemaname AND s2.tablename = s.tablename
        ) AS nullhdr
      FROM pg_stats s, (
        SELECT
          (SELECT current_setting('block_size')::numeric) AS bs,
          CASE WHEN substring(v,12,3) IN ('8.0','8.1','8.2') THEN 27 ELSE 23 END AS hdr,
          CASE WHEN v ~ 'mingw32' THEN 8 ELSE 4 END AS ma
        FROM (SELECT version() AS v) AS foo
      ) AS constants
      GROUP BY 1,2,3,4,5
    ) AS foo
  ) AS rs
  JOIN pg_class cc ON cc.relname = rs.tablename
  JOIN pg_namespace nn ON cc.relnamespace = nn.oid AND nn.nspname = rs.schemaname AND nn.nspname <> 'information_schema'
  LEFT JOIN pg_index i ON indrelid = cc.oid
  LEFT JOIN pg_class c2 ON c2.oid = i.indexrelid
) AS sml
WHERE tablename = 'addr'
ORDER BY wastedbytes DESC LIMIT 1;



PgCon 2009

Fixing bloat

• VACUUM FULL

• CLUSTER

• TRUNCATE

• Or most extreme: DROP/CREATE



PgCon 2009

Transaction 
wraparound

• Transaction wrap around avoidance!

• This is a counter.

• Transaction ID will eventually wrap

• Before we had autovacuum? 
Database shut down awaiting a VACUUM.



PgCon 2009

VACUUM 
vs VACUUM FULL

VACUUM updates the Free Space Map, and 
marks space to be reused

VACUUM FULL compacts and frees space 
back up to the filesystem 

Regular VACUUM FULL is not 
recommended :)



PgCon 2009

VACUUM: pre 8.0

• 6.x-7.1:  VACUUM FULL every time :(

• 7.2: Lazy VACUUM (Thanks, Tom!)



PgCon 2009

VACUUM strategy: 8.0



PgCon 2009

VACUUM strategy: 8.0

• Manual VACUUMing

• CRON

• Not fun.



PgCon 2009

Managing VACUUM

vacuum_cost_limit = 200     # 1-10000 credits
vacuum_cost_page_hit = 1     # 0-10000 credits
vacuum_cost_page_miss = 10  # 0-10000 credits
vacuum_cost_page_dirty = 20  # 0-10000 credits
vacuum_cost_delay = 0      # 0-1000 milliseconds
vacuum_freeze_min_age = 100000000



PgCon 2009

Managing VACUUM

vacuum_cost_limit = 200     # 1-10000 credits

vacuum_cost_page_hit = 1     # 0-10000 credits
vacuum_cost_page_miss = 10  # 0-10000 credits
vacuum_cost_page_dirty = 20  # 0-10000 credits

page_hit - “estimated cost for vacuuming a buffer found 
in the shared buffer cache. It represents the cost to 
lock the buffer pool, lookup the shared hash table and 
scan the content of the page. The default value is one.”



PgCon 2009

Managing VACUUM

vacuum_cost_limit = 200     # 1-10000 credits

vacuum_cost_page_hit = 1     # 0-10000 credits
vacuum_cost_page_miss = 10  # 0-10000 credits
vacuum_cost_page_dirty = 20  # 0-10000 credits

page_miss: “estimated cost for vacuuming a buffer that 
has to be read from disk. This represents the effort to 
lock the buffer pool, lookup the shared hash table, read 
the block in from the disk and scan its content.”



PgCon 2009

Managing VACUUM

vacuum_cost_limit = 200     # 1-10000 credits

vacuum_cost_page_hit = 1     # 0-10000 credits
vacuum_cost_page_miss = 10  # 0-10000 credits
vacuum_cost_page_dirty = 20  # 0-10000 credits

page_dirty: “estimated cost charged when vacuum modifies 
a block that was previously clean. Represents the extra 
I/O required to flush the dirty block out to disk again”



PgCon 2009

Managing VACUUM

vacuum_cost_delay = 0      # 0-1000 milliseconds

cost_delay: number of milliseconds for VACUUM to sleep 
after exceeding the vacuum_cost_limit

The idea is to reduce the impact of I/O during VACUUM by 
spreading it out.

If you must: Start small, measure the changes!



PgCon 2009

Managing VACUUM

vacuum_freeze_min_age = 100000000

“The maximum time that a table can go unvacuumed is two 
billion transactions minus the vacuum_freeze_min_age 
that was used when it was last vacuumed.”



PgCon 2009

8.1: Autovacuum

• Turned off by default

• Low lock priority - won’t block DDL



PgCon 2009

Managing autovacuum

autovacuum = on             
log_autovacuum_min_duration = -1

autovacuum_vacuum_scale_factor = 0.2
autovacuum_analyze_scale_factor = 0.1
autovacuum_vacuum_threshold = 50  
autovacuum_analyze_threshold = 50
autovacuum_freeze_max_age = 200000000
autovacuum_vacuum_cost_delay = 20
autovacuum_vacuum_cost_limit = -1

autovacuum_max_workers = 3 
autovacuum_naptime = 1min  



PgCon 2009

Managing autovacuum
autovacuum = on 
log_autovacuum_min_duration = -1

-1: don’t log
0: log all
N: Log any that take longer than N seconds

EXAMPLE:

LOG:  automatic vacuum of table "public.mytable": 
        index scans: 1
        pages: 0 removed, 5795 remain
        tuples: 179 removed, 37323 remain
        system usage: CPU 0.01s/0.02u sec elapsed 10.00 sec



PgCon 2009

Managing autovacuum

autovacuum_vacuum_scale_factor = 0.2
autovacuum_analyze_scale_factor = 0.1

How much of a table can change before VACUUM or 
ANALYZE are run.

YMMV but: 

May have to lower vacuum_scale_factor: 0.1, 0.05
May have to lower analyze_scale_factor: 0.1



PgCon 2009

Managing autovacuum

vacuum threshold = 

vacuum base threshold 

+ vacuum scale factor * number of tuples

number of tuples == pg_class.reltuples



PgCon 2009

Managing autovacuum 
(before 8.4)

postgres@planetbeta:5432=# \d pg_autovacuum
    Table "pg_catalog.pg_autovacuum"
      Column      |  Type   | Modifiers 
------------------+---------+-----------
 vacrelid         | oid     | not null
 enabled          | boolean | not null
 vac_base_thresh  | integer | not null
 vac_scale_factor | real    | not null
 anl_base_thresh  | integer | not null
 anl_scale_factor | real    | not null
 vac_cost_delay   | integer | not null
 vac_cost_limit   | integer | not null
 freeze_min_age   | integer | not null
 freeze_max_age   | integer | not null
Indexes:
    "pg_autovacuum_vacrelid_index" UNIQUE, btree (vacrelid)



PgCon 2009

Managing autovacuum
(before 8.4)

Caveats: 

pg_autovacuum table not backed up - have 
to grab them explicitly

Slony



PgCon 2009

Managing autovacuum 
(8.4)

Set with Storage Parameters.

http://www.postgresql.org/docs/8.4/static/sql-
createtable.html#SQL-CREATETABLE-STORAGE-
PARAMETERS

Example:
CREATE TABLE test ( id int ) 
      WITH (autovacuum_enabled=TRUE);



PgCon 2009

Managing autovacuum 
(8.4)

Can also change parameters after table is created with 
ALTER TABLE commands.

Example:
ALTER TABLE test SET (autovacuum_enabled = FALSE);

test=# select relname,reloptions from pg_class where relname 
= 'test';
 relname |         reloptions         
---------+----------------------------
 test    | {autovacuum_enabled=false}
(1 row)



PgCon 2009

Managing autovacuum 
(8.4)

All options also include a separate configuration control for 
toast, specified by prefixing the setting with ‘toast.’.
autovacuum_enabled
autovacuum_vacuum_scale_factor
autovacuum_analyze_scale_factor
autovacuum_vacuum_threshold  
autovacuum_analyze_threshold
autovacuum_freeze_max_age
autovacuum_vacuum_cost_delay
autovacuum_vacuum_cost_limit
autovacuum_freeze_min_age
autovacuum_freeze_table_age
autovacuum_max_workers 
autovacuum_naptime



PgCon 2009

Old Free Space Map
(before 8.4)

• A shared memory block

• Requires a stop/start database to adjust 
parameters

• Rebuilt every time you run VACUUM

• Lost on crash or PITR



PgCon 2009

Old Free Space Map

Parameters to adjust:

max_fsm_pages

max_fsm_relations

Based on output from VACUUM VERBOSE



PgCon 2009

Example 
VACUUM VERBOSE
INFO:  free space map contains 964 pages 
in 608 relations

DETAIL:  A total of 10208 page slots are 
in use (including overhead).

10208 page slots are required to track 
all free space.

Current limits are:  204800 page slots, 
1000 relations, using 1265 kB.



PgCon 2009

8.4

• Free Space Map and Visibility Map

• Heikki Linnakangas, lead developer

• Heikki’s FOSDEM presentation:
http://wiki.postgresql.org/wiki/
Image:FSM_and_Visibility_Map.pdf

http://wiki.postgresql.org/wiki/Image:FSM_and_Visibility_Map.pdf
http://wiki.postgresql.org/wiki/Image:FSM_and_Visibility_Map.pdf
http://wiki.postgresql.org/wiki/Image:FSM_and_Visibility_Map.pdf
http://wiki.postgresql.org/wiki/Image:FSM_and_Visibility_Map.pdf


PgCon 2009

New Free Space Map

• Binary tree structure

• Stored on disk in normal 8k pages

• NO MORE CONFIGURATION



PgCon 2009

Free Space Map

8
8 7

4 8 5 7
4 3 3 8 3 7 45

1 4 3 0 5 3 780 1 2 3 1 3 46



PgCon 2009

Searching

8
8 7

4 8 5 7
4 3 3 8 3 7 45

1 4 3 0 5 3 780 1 2 3 1 3 46

Start at bottom.
Climb up for node >= 8
Climb down path to find the page with 8 blocks free.



PgCon 2009

Visibility Map

• A bitmap of heap pages

• 1 means “all tuples on page are visible to all 
transactions”

• Set during a VACUUM

• Cleared during INSERT, UPDATE, DELETE

• Failed to clear? Not a big deal.



PgCon 2009

Partial VACUUM in 8.4!

• Visibility Map lets VACUUM skip pages 
already marked as “visible”



PgCon 2009

Example

test=# CREATE TABLE test (id int4);
CREATE TABLE
test=# INSERT INTO test SELECT 
generate_series(1,100000);
INSERT 0 100000
test=# delete from test where id < 50000;
DELETE 49999



PgCon 2009

Version 8.3 VACUUM
test=# VACUUM VERBOSE test; 
INFO:  vacuuming "public.test"

INFO:  "test": removed 49999 row versions in 
197 pages

INFO:  "test": found 49999 removable, 50001 
nonremovable row versions in 393 pages
DETAIL:  0 dead row versions cannot be 
removed yet.

There were 0 unused item pointers.

198 pages contain useful free space.

0 pages are entirely empty.
CPU 0.00s/0.00u sec elapsed 0.00 sec.



PgCon 2009

Version 8.3 VACUUM
test=# VACUUM VERBOSE test;
INFO:  vacuuming "public.test"

INFO:  "test": found 0 removable, 50001 
nonremovable row versions in 393 pages
DETAIL:  0 dead row versions cannot be 
removed yet.
There were 49999 unused item pointers.

198 pages contain useful free space.

0 pages are entirely empty.

CPU 0.00s/0.00u sec elapsed 0.00 sec.

VACUUM



PgCon 2009

Version 8.4 VACUUM

test=# VACUUM VERBOSE test;
INFO:  vacuuming "public.test"
INFO:  "test": found 0 removable, 8141 nonremovable 
row versions in 228 out of 393 pages
DETAIL:  0 dead row versions cannot be removed yet.
There were 49999 unused item pointers.
0 pages are entirely empty.
CPU 0.00s/0.00u sec elapsed 0.00 sec.
VACUUM



PgCon 2009

test=# VACUUM VERBOSE test;
INFO:  vacuuming "public.test"
INFO:  "test": found 0 removable, 0 nonremovable row 
versions in 31 out of 393 pages
DETAIL:  0 dead row versions cannot be removed yet.
There were 7905 unused item pointers.
0 pages are entirely empty (ADD AT THE END).
CPU 0.00s/0.00u sec elapsed 0.00 sec.
VACUUM



PgCon 2009

FSM & VM: file forks

lulu-2:11563 postgres$ ls -al | head
total 10408
drwx------  208 postgres  daemon    7072 Apr 30 22:37 .
drwx------    6 postgres  daemon     204 May  5 10:51 ..
-rw-------    1 postgres  daemon    8192 Apr 30 22:37 112
-rw-------    1 postgres  daemon    8192 Apr 30 22:37 113
-rw-------    1 postgres  daemon   57344 Apr 30 22:37 11447
-rw-------    1 postgres  daemon   24576 Apr 30 22:37 11447_fsm
-rw-------    1 postgres  daemon    8192 Apr 30 22:37 11447_vm



PgCon 2009

• Article about Free Space Map and Visibility 
Map:
http://tr.im/hKnE

http://tr.im/hKnE
http://tr.im/hKnE


PgCon 2009

Questions?



PgCon 2009

Thanks!

• Tom for making lazy VACUUM!

• Heikki Linnakangas for rewriting the Free 
Space Map and his FOSDEM talk.

• Magnus Hagander for help with the MVCC 
slides.



VACUUM Strategy:
Autovacuum, FSM, 

Visibility Map 
Selena Deckelmann

End Point Corporation
selena@endpoint.com

@selenamarie

mailto:selena@endpoint.com
mailto:selena@endpoint.com

